论文标题
通过sgr a $^*$的镜头:识别和解决强烈镜头的连续重力波超出爱因斯坦半径
Through the lens of Sgr A$^*$: identifying and resolving strongly lensed Continuous Gravitational Waves beyond the Einstein radius
论文作者
论文摘要
镜头引力波将提供新的手段来探测宇宙中物质的分布,互补与电磁信号互补。除了短暂的紧凑型二元合并以外,镜头连续的引力波提供了新的挑战和机会。在这里,我们考虑通过孤立的中子星和SGR A $^*$镜头发出的连续重力波,这是我们星系中心的超质量黑洞,这是下一代引力波检测器可观察到的系统。我们详细分析了该系统的签名,解决了参数估计和模型选择。未来的探测器可以通过精确$ \ sim 1-10 \%$来区分镜头连续波,并根据源距离的$^*$ $ \ sim 1-10 \%$ $ \%$ $,这取决于源距离,这取决于源距离,这要归功于Observer-Lens-Source-Source-Source-Source System的相对运动。相对于先前的估计,观察到强烈的中子恒星的机会增加一个数量级,这要归功于在几个爱因斯坦半径上检测到镜头系统的可能性。可以使用角度精度$ \ sim 10 $ MAS解决多个图像,与最佳的光学望远镜相当。图像本地化探测了轴向对称性以及伴侣的存在偏向于与恒星轨道和黑洞成像相辅相成的区域中的$^*$。我们的方法和许多结果扩展到其他镜头(例如银河系子结构)和来源(例如长期寿命的灵感二进制文件),将镜头的连续重力波渲染为天体物理学和基本物理学的多功能探针。
Lensed gravitational waves will offer new means to probe the distribution of matter in the universe, complementary to electromagnetic signals. Lensed continuous gravitational waves provide new challenges and opportunities beyond those of transient compact binary coalescence. Here we consider continuous gravitational waves emitted by isolated neutron stars and lensed by Sgr A$^*$, the supermassive black hole at the center of our galaxy, a system observable by the next generation of gravitational wave detectors. We analyze the signatures of this system in detail, addressing parameter estimation and model selection. Future detectors can distinguish lensed continuous waves and measure their parameters with precision $\sim 1 - 10\%$ for sources within $2-4$ Einstein radii of Sgr A$^*$, depending on the source distance, thanks to the relative motion of the observer-lens-source system. The chances of observing strongly-lensed neutron stars increase by one order of magnitude relative to previous estimates, thanks to the possibility of detecting lensed systems at several Einstein radii. Multiple images can be resolved with an angular accuracy $\sim 10$mas, comparable to the best optical telescopes. Image localization probes deviations from axial symmetry and the existence of companions to Sgr A$^*$ in regions complementary to stellar orbits and black hole imaging. Our methods and many of our results extend to other lenses (e.g. galactic substructure) and sources (e.g. long-lived inspiralling binaries), rendering lensed continuous gravitational waves into versatile probes of astrophysics and fundamental physics.