论文标题
使用深度学习的前景去除CO强度映射
Foreground Removal of CO Intensity Mapping Using Deep Learning
论文作者
论文摘要
线强度映射(LIM)是研究恒星形成,宇宙的大规模结构和电离时代(EOR)的有前途的探针。由于一氧化碳(CO)是宇宙中第二大分子,除了分子氢$ {\ rm h} _2 $,因此适合作为LIM调查的示踪剂。但是,就像其他LIM调查一样,CO强度映射也遭受了强烈的前景污染,需要消除以提取有价值的天体物理和宇宙学信息。在这项工作中,我们采用$^{12} $ CO($ \ it J $ = 1-0)排放线,以研究深度学习方法是否可以通过删除前景来有效地恢复信号。 CO(1-0)强度图是通过考虑CO亮度和光晕质量关系的N体模拟生成的,我们通过比较不同的关系讨论了两个具有中位数和低CO信号的案例。我们添加了由真实观察结果产生的前景,包括热灰尘,旋转灰尘,无免费,同步加速器发射和CMB各向异性。还考虑了具有侧齿效果的光束。我们的深度学习模型建立在Resunet的基础上,该模型将图像生成算法UNET与深度学习的最先进的结构相结合。主成分分析(PCA)方法在将其馈送到重置之前,用于预处理数据。我们发现,在低仪器噪声的情况下,我们的UNET可以通过删除前景并恢复PCA信号损耗和梁效应来有效地使用正确的线路映射重建CO信号映射。我们的方法还可以应用于其他强度映射,例如中性氢21cm调查。
Line intensity mapping (LIM) is a promising probe to study star formation, the large-scale structure of the Universe, and the epoch of reionization (EoR). Since carbon monoxide (CO) is the second most abundant molecule in the Universe except for molecular hydrogen ${\rm H}_2$, it is suitable as a tracer for LIM surveys. However, just like other LIM surveys, CO intensity mapping also suffers strong foreground contamination that needs to be eliminated for extracting valuable astrophysical and cosmological information. In this work, we take $^{12}$CO($\it J$=1-0) emission line as an example to investigate whether deep learning method can effectively recover the signal by removing the foregrounds. The CO(1-0) intensity maps are generated by N-body simulations considering CO luminosity and halo mass relation, and we discuss two cases with median and low CO signals by comparing different relations. We add foregrounds generated from real observations, including thermal dust, spinning dust, free-free, synchrotron emission and CMB anisotropy. The beam with sidelobe effect is also considered. Our deep learning model is built upon ResUNet, which combines image generation algorithm UNet with the state-of-the-art architecture of deep learning, ResNet. The principal component analysis (PCA) method is employed to preprocess data before feeding it to the ResUNet. We find that, in the case of low instrumental noise, our UNet can efficiently reconstruct the CO signal map with correct line power spectrum by removing the foregrounds and recovering PCA signal loss and beam effects. Our method also can be applied to other intensity mappings like neutral hydrogen 21cm surveys.