论文标题

PRISM:保存医疗保健互联网安全管理的隐私

PRISM: Privacy Preserving Healthcare Internet of Things Security Management

论文作者

Hadjixenophontos, Savvas, Mandalari, Anna Maria, Zhao, Yuchen, Haddadi, Hamed

论文摘要

消费者医疗保健Internet(IoT)设备在我们的家庭和医院中广受欢迎。这些设备以低成本提供连续监控,可用于增强高精度医疗设备。但是,在应用预培训的全球模型中,对智能健康监测的异常检测仍然存在重大挑战,这些模型对他们提供的照顾的各种各样的个人进行了智能健康监测。在本文中,我们提出了Prism,这是一种基于边缘的系统,用于实验家庭智能医疗设备。我们开发了一种严格的方法,该方法依赖于自动的物联网实验。我们在两年内使用44名痴呆症患者(PLWD)的家庭监测的富裕现实数据集。我们的结果表明,可以以高达99%的精度确定异常,平均训练时间低至0.88秒。在对同一患者进行训练时,所有模型都具有高精度,但对不同患者进行评估时,其准确性会降低。

Consumer healthcare Internet of Things (IoT) devices are gaining popularity in our homes and hospitals. These devices provide continuous monitoring at a low cost and can be used to augment high-precision medical equipment. However, major challenges remain in applying pre-trained global models for anomaly detection on smart health monitoring, for a diverse set of individuals that they provide care for. In this paper, we propose PRISM, an edge-based system for experimenting with in-home smart healthcare devices. We develop a rigorous methodology that relies on automated IoT experimentation. We use a rich real-world dataset from in-home patient monitoring from 44 households of People Living With Dementia (PLWD) over two years. Our results indicate that anomalies can be identified with accuracy up to 99% and mean training times as low as 0.88 seconds. While all models achieve high accuracy when trained on the same patient, their accuracy degrades when evaluated on different patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源